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Abstract. We study the electronic structure and correlations in the geometrically frustrated two dimen-
sional checkerboard lattice. In the large U limit considered here we start from an extended Hubbard
model of spinless fermions at half-filling. We investigate the model within two distinct Green’s function
approaches: In the first approach a single-site representation decoupling scheme is used that includes the
effect of nearest neighbor charge fluctuations. In the second approach a cluster representation leading to
a ‘multiorbital’ model is investigated which includes intra-cluster correlations more rigorously and those
between clusters on a mean field basis. It is demonstrated that with increasing nearest-neighbor Coulomb
interaction V both approaches lead to a metal-insulator transition with an associated ‘Mott-Hubbard’
like gap caused by V. Within the single site approach we also explore the possibility of charge order.
Furthermore we investigate the evolution of the quasiparticle bands as funtion of V.

PACS. 71.30.+h Metal-insulator transitions and other electronic transitions – 71.10.Fd Lattice fermion
models (Hubbard model, etc.) – 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions,
Luttinger liquid, etc.) – 71.27.+a Strongly correlated electron systems; heavy fermions

1 Introduction

To treat the problem of a metal-insulator transition (MIT)
driven by electron-electron interactions in lattice models
with a fractional electron site occupancy, both the on-
site and long-range Coulomb repulsions are equally im-
portant [1]. A lattice with geometrical frustration imposes
additional complications and may produce new features
of MIT. The well known example is the Verwey tran-
sition [3] in magnetite (Fe3O4) at TV ≈ 120 K. Mag-
netite has a spinel structure and A sites are occupied
regularly with Fe3+ ions. On the B sites forming a py-
rochlore lattice, the Fe ions are in the mixed valent state
of Fe2+:Fe3+ = 1:1. Therefore, in the high-temperature
charge disordered state, T > TV , a band structure calcu-
lation would predict a quarter-filled conduction band, i.e.,
a metallic state with one itinerant electron per two sites.
Below the Curie temperature TC ≈ 850 K of magnetite
the itinerant electrons are (almost) fully ferromagnetically
polarized. Therefore they can be treated as a system of in-
teracting spinless fermions. In terms of spinless fermions,
the charge occupancy of one electron per two sites cor-
responds to a half band-filling. Below the Verwey tem-
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perature TV , the charge degrees of freedom are ordered
and an insulating state occurs. As was first pointed out
by Anderson [4], properties of the Verwey transition can
not be understood without taking into account the geo-
metrical frustration and the resulting huge degeneracy of
the ground-state charge configurations in the pyrochlore
lattice. Two more recent examples of electronic structure
changes connected to charge ordering in spinels are found
in AlV2O4 with temperature decreasing at ambient pres-
sure [5,6] and in LiV2O4 under the external pressure [7,6].
An interesting observation is that charge ordering in these
three spinel systems is accompanied with a lattice struc-
tural change, i.e., the system tries to avoid the geometrical
frustration of the pyrochlore structure. At the same time,
no MIT and charge ordering were observed in LiV2O4 at
ambient pressure down to very low temperatures, but in-
stead the metallic compound LiV2O4 exhibits a heavy-
fermion behavior below 30 K [8,9].

Most of the work until now has been devoted to an
understanding of the magnetic properties of geometrically
frustrated lattices such as pyrochlore structure, since in
the presence of antiferromagnetic interaction frustration
acts against a conventional long-range order and may sta-
bilize a spin-liquid state [10]. Charge degrees of freedom
have in contrast been studied much less [11]. In fact,
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charge ordering in geometrically frustrated systems has
been an intriguing and unsettled problems [12]. For exam-
ple, numerical diagonalizations of a Hamiltonian for spin-
less fermion with strong nearest-neighbor repulsion on a
checkerboard lattice have given evidence that at half fill-
ing (number of spinless fermion equals one half the num-
ber of sites) the ground state is two-fold degenerate but
a liquid [13]. This must be kept in mind when that sys-
tem is treated within different approximations leading to a
charge ordered ground state. In other words, the observed
charge order in frustrated structures could crucially de-
pend on associated lattice deformations, i.e., the involve-
ment of lattice degree of freedom.

The extended Hubbard model on non-frustrated lat-
tices has been extensively investigated in one dimension
at quarter-[14] or half-filling [15], for two-leg ladders at
quarter-filling [16], for two-dimensional square lattices at
half-filling [17] and in the limit of infinite dimensions at
quarter-[18] or half-filling [19]. A variety of techniques,
such as Hartree-Fock approximation, pertubation theory,
dynamical mean-field theory, as well as numerical meth-
ods, e.g., quantum Monte Carlo and density-matrix renor-
malization group have been employed. However all these
investigations were based on the non-frustrated lattice.

In the present paper, we apply a Green’s function ap-
proach to study the possible phase transitions of a half-
filled spinless fermion model, i.e., a system with one elec-
tron per two sites, on the frustrated checkerboard lattice
(see the inset of Fig. 1). The lattice can be viewed as a two-
dimensional projection of a pyrochlore lattice. The spinless
fermion model arises naturally for ferromagnetic materials
in which one of the spin-split bands is completely occu-
pied or completely empty as in magnetite [20]. Also this
model can be viewed as a quarter-filled extended Hubbard
model in the large U limit. Then double occupancy of a
site is forbidden and the nearest-neighbour Coulomb re-
pulsion V plays a crucial role. Because for (spinless) half
filling every second site is unoccupied on the average one
would naively expect a metallic state. Our main goal in
this work is to show that inter-site correlations V can lead
to a MI transition even for a case with less than one elec-
tron per site. We are using two different methods to study
this model.

Firstly we employ a single site approach within a
Hartree-Fock as well as Hubbard-I type approximations
(Sect. 2). By using the ‘Hubbbard-I’-type decoupling
scheme which includes the effect of nearest-neighbor
charge fluctuations, we find that with increasing value of
V first a metal-insulator transition occurs with a gap in
the excitation spectrum, while at even larger values of
V charge ordering appears. This is opposite to the re-
sult in the simple Hartree-Fock approximation, i.e. inter-
site correlations favor the MI transition and suppress the
CO. This observation may indicate that CO is indeed not
present for a rigid checkerboard or pyrochlore lattice for
any V/t ratio (it certainly is not in the limit V/t → ∞). In-
deed in the compounds AlV2O4 and LiV2O4 (under pres-
sure) where CO has been found it is accompanied by a
lattice distortion.

Fig. 1. Charge order parameter n as a function of V/t within
a mean-field approximation. Dotted line indicates the criti-
cal point of the metal-insulator transition. Inset is an illus-
tration of the checkerboard lattice with (right) and without
(left) charge order. The l-th unit cell is indicated by dotted
lines. The wave vector of the staggered CO is Q = (0, 0) due
to the two sites per unit cell. Here charge order occurs before
the metal-insulator transition takes place.

Secondly we start from a cluster representation of
the model where the intra-cluster Coulomb interaction is
taken into account exactly and the inter-cluster Coulomb
term is treated in Hartree Fock approximation (Sect. 3).
This transformation leads to an effective multi-orbital ex-
tended Hubbard model. Again we find a M-I transition at
a value similar to the first approach. In view of the sug-
gestion above we do not consider the possibility of CO in
this case, although within the Hartree Fock approxima-
tion for the inter-cluster interactions it would presumably
be present in the ground state.

Furthermore, we investigated the evolution of quasi-
particle bands in the various phases in the single-site
and cluster approaches. Following the selfconsistently de-
termined chemical potential and the formation of inter-
band gaps allows to determine the critical value for the
MI transition.

2 Single site approximation

The Hamiltonian for the spinless fermion model is given
by [11]

H = −t
∑

〈ij〉
c†i cj + V/2

∑

〈ij〉
ninj (1)

where V is the Coulomb repulsion between nearest neigh-
bors denoted by 〈ij〉. We refer to this spinless Hamiltonian
as the t − V model.

First, let us briefly review previous work on the t −
V model at half-filling and the closely related quarter-
filled extended Hubbard model in the large U limit for
different lattices. In one dimension, the t − V model can
be mapped onto an anisotropic Heisenberg model [21] and
solved exactly via Bethe ansatz. In this case, one finds a
gapless metallic phase for V < 2t and a gapped charge-
ordered state for larger values of V . For t − V model on
a two-leg ladder, it was found from renomalization group
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calculations that contrary to a single chain, the ladder
becomes a Mott insulator for arbitrarily small repulsive
interactions V [22]. By using the density matrix renor-
malization group method, Vojta [16] et al. studied the ex-
tended Hubbard model for two-leg ladders in the large U
limit. They found that the charge-ordered phase vanishes
for V < 2.5t but claimed that there will be a charge gap for
all values of V/t. For a square lattice, McKenzie [23] et al.
argued from slave-boson theory that the insulating phase
with charge order is destroyed below a critical value V of
order t and the system becomes metallic.

Here we will study the t − V model on the checker-
board lattice at half-filling (one electron per two sites)
with the aim to find out about possible MI and CO tran-
sitions in this frustrated lattice which is a 2D model for
the pyrochlore lattice. At first we will employ the Green’s
function method and various decoupling schemes within
the single-site representation. There are two sites per unit
cell. For convenience, we rewrite the Hamiltonian (1) in
the following form

H = Ht + HV,MF + H ′
V , (2)

where

Ht = −t
∑

l

[
c†l,2 (cl−x−y,1 + cl−y,1 + cl+x,2)

+c†l,1 (cl,2 + cl+x,2 + cl−y,1) + h.c.
]
, (3)

HV,MF = V
∑

l

[nl,2 (〈nl−x−y,1 + nl−y,1 + nl+x,2〉)

+ 〈nl,2〉 (nl−x−y,1 + nl−y,1 + nl+x,2)
+ nl,1 (〈nl,2 + nl+x,2 + nl−y,1〉)
+ 〈nl,1〉 (nl,2 + nl+x,2 + nl−y,1)
− 〈nl,2〉 (〈nl−x−y,1 + nl−y,1 + nl+x,2〉)
−〈nl,1〉 (〈nl,2 + nl+x,2 + nl−y,1〉)] , (4)

H ′
V = V

∑

l

[δnl,2 (δnl−x−y,1 + δnl−y,1 + δnl+x,2)

+δnl,1 (δnl,2 + δnl+x,2 + δnl−y,1)] . (5)

Here we have introduced a charge fluctuation operator
δnl,i = nl,i − 〈nl,i〉 on sites i = 1, 2 of the l-th cell. Ht is
the kinetic energy term, HV,MF is mean-field part of the
interaction term while H ′

V is the residual interaction part.
In the following we only consider the simplest charge or-
dered pattern, namely a staggered checkerboard pattern
with wave vector Q = (0, 0) illustrated in the inset of Fig-
ure 1. The average charge density on different sites in the
cell is 〈nl,i〉 = 1

2 − (−1)i n, where the order parameter n
means a charge disproportionation within each unit cell.
We now briefly discuss the motivation for considering this
order parameter of the 2D checkerboard lattice. Firstly it
corresponds precisely to the one considered as the proper
candidate for the Verwey transition in the 3D pyrochlore
or spinel- type lattices such as mangetite [3]. Secondly it
is the only type of charge order with only two sublattices.

For this case the quasiparticle poles of the Green’s func-
tions can be obtained explicitly, which is a precondition
for the self consistent determination of the order parame-
ter amplitude as a function of V/t.

The electron propagation is described by a retarded
Green’s function (for simplicity the conventional symbol
R is omitted)

Gij (l − l′, ω) =
〈〈

cli|c†l′j
〉〉

ω
=

∫ 〈〈
cli(t)|c†l′j

〉〉
eiωtdt.

(6)
where

〈〈
cli(t)|c†l′j

〉〉
= −iθ (t)

〈
{cli (t) , c†l′j (0)}

〉
. (7)

and {, } denotes the anticommutator. The above (2 × 2)-
matrix Green’s function must satisfy the equation

ω 〈〈A|B〉〉ω = 〈 {A, B}〉 + 〈〈[A, H ] |B〉〉ω . (8)

By introducing the Fourier transformation

Gij (k, ω) =
1
N

∑

k

eik·(Rl−R′
l)Gij (l− l′, ω) , (9)

the equation (8) can be now written explicitly as
(
ω1̂ + Λ̂ (k)

)
Ĝ (k, ω) = 1̂ + V Γ̂ (k, ω) . (10)

with

Λ̂ (k) =
(
− (3 − 2n)V + 2t cosky 4te−i

kx+ky
2 cos kx

2 cos ky

2

4tei
kx+ky

2 cos kx

2 cos ky

2 − (3 + 2n)V + 2t cos kx

)
,

(11)

where 1̂ is the unit matrix and Γ̂ (k, ω) is the Fourier
transformation of the (2× 2) higher-order matrix Green’s
function which is defined as

Γij (l − l′, ω) =

〈〈
cl,i

∑

(n.n.)∈(l,i)

δn(n.n.)|c†l′,j
〉〉

ω

. (12)

Here the summation is over six nearest-neighbor sites
(n.n.) surrounding the site (l, i)

2.1 Mean-field approximation

In the first step we may decouple

Γij (l − l′, ω) ≈
〈

∑

(n.n.)∈(l,i)

δn(n.n.)

〉〈〈
cl,i|c†l′,j

〉〉

ω
= 0,

(13)
which leads to a mean-field approximation and the quasi-
particle dispersions are given by

E±
k /t = −(cos kx + cos ky − 3V/t)

± [4(1 + cos kx)(1 + cos ky)

+ (2nV/t − cos kx + cos ky)2]1/2. (14)
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Fig. 2. Quasiparticle dispersion within mean-field theory for
different value of V/t. The chemical potential µ is fixed at
zero energy. (a) is the noninteracting case without charge or-
der. These two bands touch at (π, π) and the upper band is
flat. (b) is in the metallic phase with small charge order. The
two bands still touch while the upper band become dispersive
due to the inequivalence of diagonal hopping. (c) is exactly at
the critical point. The two bands touch at (0, π). (d) is in the
insulating phase. The two bands seperate.

Now the intra-cell charge disproportionation n has to be
determined from the following self-consistent equation

n =
1

2N

∑

k

(2nV/t− cos kx + cos ky)[
4(1 + cos kx)(1 + cos ky)

+(2nV/t − cos kx + cos ky)2
]1/2

. (15)

The calculated phase diagram is shown in Figure 1. In the
present mean-field approximation (Γ̂ ≡ 0) the metallic
phase is already charge ordered before a charge-transfer-
type metal-insulator phase transition takes place at V =
2.8t. In the non-interacting case V = 0 (Fig. 2a), the upper
band is flat while the lower band is dispersive. It touches
the flat band at (π, π). As shown in Figures 2b, 2c with
increasing intersite repulsion V the flat band becomes in-
creasingly dispersive with increasing charge order and the
touching point moves from (π, π) towards (0, π) . The dis-
persion of the previously flat band is due to the inequiv-
alence of diagonal hopping (see inset of Fig. 1) induced
by charge order. Finally, for V > 2.8t the two bands sep-
arate as shown in Figure 2d. In the half-filled case, the
lower band is fully occupied and the upper band is empty
resulting in a charge-transfer-type insulator.

2.2 ‘Hubbard I’- approximation for the inter-site
correlations

The neglect of correlations overestimates the tendency to
CO symmetry breaking. Therefore, in the strongly cor-
related case (V � t), the mean-field results are unreli-
able and it is necessary to consider equations of motion of
higher-order Green’s functions Γij (l − l′, ω) which can be

written as



ω − V
∑

(n.n.)∈(l,i)

〈
n(n.n.)

〉




×
〈〈

cl,i
∑

(n.n.)∈(l,i)

δn(n.n.)|c†l′,j
〉〉

ω

=

∑

(n.n.)∈(l,i)

δ(l′,j),(n.n.)

〈
clic

†
(n.n.)

〉

−t
∑

(n.n.)∈(l,i)

〈〈
c(n.n.)δnl,i|c†l′,j

〉〉

ω

−t
∑

(n.n.)∈(l,i)

(〈nl,i〉 − 〈nn.n.〉)
〈〈

c(n.n.)|c†l′,j
〉〉

ω

−t
∑

(n.n.)∈(l,i)

∑

(n.n.)′∈(l,i)

(
1 − δ(n.n.)′,(n.n.)

)

×
〈〈

c(n.n.)′δn(n.n.)|c†l′,j
〉〉

ω

−t
∑

(n.n.)∈(l,i)

∑

(n.n.)′∈(n.n.)

(
1 − δ(n.n.)′,(l,i)

)

×
〈〈

cl,ic
+
(n.n.)c(n.n.)′ |c†l′,j

〉〉

ω

+t
∑

(n.n.)∈(l,i)

∑

(n.n.)′∈(n.n.)

(
1 − δ(n.n.)′,(l,i)

)

×
〈〈

cl,ic
+
(n.n.)′c(n.n.)|c†l′,j

〉〉

ω

+V

〈〈
cl,i




∑

(n.n.)∈(l,i)

δn(n.n.)




2

|c†l′,j
〉〉

ω

. (16)

Here we adopt the following approximations, which con-
sist in an extension of the on-site Hubbard I decoupling
scheme [24] to spinless fermion on a checkerboard lattice
with intersite Coulomb interaction:

〈〈
cl,i

(
c+
(n.n.)c(n.n.)′ − c+

(n.n.)′c(n.n.)

)
|c†l′,j

〉〉

ω
�

(〈
c+
(n.n.)c(n.n.)′

〉
−

〈
c+
(n.n.)′c(n.n.)

〉)〈〈
cl,i|c†l′,j

〉〉

ω

= 0. (17)

In equation (16), the fourth term involves both the
nearest- and next-nearest-neighbor charge correlations
and we neglect the latter. When treating the last term
in equation (16) we also neglect the more distant charge
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correlations and approximate as

〈〈
cl,1




∑

(n.n.)∈(l,1)

δn(n.n.)




2

|c†l′,j
〉〉

ω

�

〈


∑

(n.n.)∈(l,1)

δn(n.n.)




2〉 〈〈

cl,1|c†l′,j
〉〉

ω
�



3
2
− 6n2 + 2

〈
δnl,2

∑

(n.n.)∈(l,2)

δn(n.n.)

〉



×
〈〈

cl,1|c†l′,j
〉〉

ω
. (18)

Finally the equation of motion for the higher-order
Green’s function Γij (k, ω) can be written as

(
ω1̂ + Λ̂ (k)

)
Γ̂ (k, ω) = B̂ (k) + M̂ (k) Ĝ (k, ω) . (19)

where

M̂ (k) =





V K2

−8nte−i
kx+ky

2 ×
cos kx

2 cos ky

2

8ntei
kx+ky

2 ×
cos kx

2 cos ky

2

V K1




, (20)

and

B̂ (k) =





2
〈
cl1c

†
l−y1

〉
cos ky

4
〈
cl1c

†
l2

〉
e−i

kx+ky
2

× cos kx

2 cos ky

2

4
〈
cl1c

†
l2

〉
ei

kx+ky
2

× cos kx

2 cos ky

2

2
〈
cl2c

†
l+x2

〉
cos kx




.

(21)
Here we used the definition

Ki =



3
2
− 6n2 + 2

〈
δnl,i

∑

(n.n.)∈(l,i)

δn(n.n.)

〉

 . (22)

By solving equation (19) with respect to Γ̂ and after sub-
stituting Γ̂ into equation (10) one obtains the final so-
lution for the Green’s function Ĝ. For the electron con-
centration 1/2 (one electron per unit cell), the chemical
potential µ, the charge disproportionation n and the hop-
ping amplitude

〈
cl1c

†
l2

〉
are calculated from the following

set of self-consistent equations:

1 =
1

N/2

∑

k

∫ µ

−∞
dω

(
− 1

π

)
Im [G11 (k, ω) + G22 (k, ω)] ,

(23)

n =
1

N/2

∑

k

∫ µ

−∞
dω

(
− 1

π

)
Im

[
G11 (k, ω)−G22 (k, ω)

2

]
,

(24)

〈
cl1c

†
l2

〉
=

1
N/2

∑

k

∫ µ

−∞
dω

(
− 1

π

)
Im G12(k, ω). (25)

The higher-order Green’s function Γij (k, ω) can
be easily derived from equation (10). Therefore
the nearest-neighbor charge fluctuation correlation〈
δnl,i

∑
(n.n.)∈(l,i) δn(n.n.)

〉
can be calculated as

〈
δnli

∑

(n.n.)∈(l,i)

δn(n.n.)

〉
=

1
N/2

∑

k

∫ µ

−∞
dω

(
− 1

π

)
Im Γii (k, ω) . (26)

Furthermore the hopping amplitude
〈
cl1c

†
l−y1

〉
and

〈
cl2c

†
l+x2

〉
can be also determined from G11 (k, ω) and

G22 (k, ω) respectively.
The one-particle retarded Green’s function exhibits

four poles given by the roots of D = 0 where D is de-
fined as

D =
(
ω − E+

k

)2 (
ω − E−

k

)2
+ V 4K1K2

+ 16n2V 2t2 (1 + cos kx) (1 + cos ky)

− V 2K1[(ω − (3 − 2n)V + 2t cosky)2

− 4t2 (1 + cos kx) (1 + cos ky)]

− V 2K2[(ω − (3 + 2n)V + 2t coskx)2

− 4t2 (1 + cos kx) (1 + cos ky)]. (27)

As a consequence, four bands are obtained. For V = 0,
two branches of momentum-dependent dispersions are ob-
tained from equation (27): E−

k |V =0 = −2t(cos kx+cosky+
1) and E+

k |V =0 = 2t as expected. When t = 0, two poles
ω = 2V and ω = 4V are obtained from above equations,
which describes one hole or one particle excitation.

In Figure 3a we show the phase diagram within
the previously used decoupling scheme. First, a metal-
insulator transition occurs at Vc1 = 4.86t and then charge
ordering appears at Vc2 = 6.47t. In the interval V > Vc1

and V < Vc2 a gap opens and increases with increasing
value of V . At Vc2, it drops to a smaller value. For V > Vc2,



270 The European Physical Journal B

Fig. 3. Results within Hubbard I-like approximation.
Full(dashed) lines correspond to left (right) ordinates and
labels. (a) charge order (CO) parameter n versus V/t (left
label). The arrow indicates the phase boundary between
the metallic and insulating phase without charge ordering.
In contrast to the mean-field approximation, the charge-
ordered phase transition is of first order and occurs after
a Mott-Hubbard-like metal-insulator transition has taken
place. The dashed line shows the quasiparticle gap ver-
sus V/t in both insulating phases (right label). (b) Hop-

ping amplitude (solid line) from site 2 to site 1 (
〈
c†l1cl2

〉
)

(left label) and nearest-neighbor charge fluctuation correla-

tions
〈
δnli

∑
(n.n.)∈(l,i) δn(n.n.)

〉
(dashed line, right label) ver-

sus V/t. (c) Energy difference between ordered and disordered
state versus V/t. For V > Vc2, the charge-ordered state has
lower energy.

the gap increases again monotonously. In the charge or-
dered phase, there exist always two self-consistent solu-
tions, i.e., a charge ordered and a disordered one. By com-
paring the energy of these two states, (see Fig. 3c), we
find for V > Vc2 that the charge ordered state has lower
energy. The phase transition is of first order. Figure 3b
shows that at the metal-insulator transition the hopping
amplitude

〈
cl1c

†
l2

〉
vanishes.

In the following we want to explain this feature in more
detail. For that purpose we study the poles of the retarded

Fig. 4. evolution of the quasiparticle spectrum within a
Hubbard I-like approximation for different value of V/t. The
chemical potential µ is fixed at zero energy. V/t = 0 is al-
ready shown in Figure 2a. Figures (a), (b) and (c) are in the
metallic phase (0 < V < Vc1 = 4.86t). Figures (d) and (e)
are in the insulating phase without CO symmetry breaking
(Vc1 < V < Vc2 = 6.47t). Reminiscent of the upper and lower
Hubbard band splitting, the metal-insulator phase transition
at Vc1 is of Mott-Hubbard type. Figure (f) is in the insulating
phase with CO (V > Vc2).

Green’s function as a function of increasing value of V/t.
Consider first the trivial case of V = 0 (see Fig. 2a). The
states in the dispersive band are of bonding and in the flat
band of antibonding character. As seen in Figures 4a, b
and c these bands split into four when 0 < V < Vc1 and
the Hubbard-I like approximation is made. The retarded
Green’s function has therefore four poles for each k vec-
tor. In the regime 0 < V < Vc1, states in the antibonding
flat band become more and more occupied as V increases.
Therefore the expectation value

〈
c†l1cl2

〉
decreases since

an equal occupational probability of a bonding and anti-
bonding state implies that

〈
c†l1cl2

〉
= 0. This is the case

in the regime Vc1 < V < Vc2 shown in Figures 4d, e.
Note that a correlation gap has opened above the two oc-
cupied lower bands which implies a Mott-Hubbard type
insulating state and the nearest-neighbor charge fluctua-
tion correlations δnli

∑
(n.n.)∈(l,i) δn(n.n.) remain constant.

When V > Vc2, then due to symmetry breaking one can
no longer distinguish between bonding and antibonding
state and

〈
c†l1cl2

〉
	= 0 (see Figs. 4f). As V continues to

increase, charge order become more and more pronounced
and

〈
c†l1cl2

〉
decreases again monotonously. This explains
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the behavior of
〈
c†l1cl2

〉
shown in Figure 3. The inflexion

point at V/t = 2.2 shown in Figure 3b is due to the lower
flat band crossing the inflexion points (maximum of DOS)
of the upper dispersive band shown in Figure 4b. For V >
Vc2, CO strongly suppresses the nearest-neighbor charge
fluctuation correlations δnli

∑
(n.n.)∈(l,i) δn(n.n.) which is

site-independent for all value of V/t as expected.
In this section we have studied the half-filled (one elec-

tron per two sites) spinless t−V model on a checkerboard
lattice within mean field theory and a ‘Hubbard-I type’ ap-
proach. In the former approximation which overestimates
the tendency to symmetry breaking, CO appears before
the system becomes an insulator. By using a Green’s func-
tion approach and a decoupling scheme that includes the
effect of nearest-neighbor charge fluctuations, however,
it was shown that first a MI transition into an insulat-
ing state without CO takes place and only for larger V
eventually CO appears. It is presently not clear, how-
ever, whether the ground state really exhibits charge or-
der for finite V/t. It is known that in the limit (V/t → ∞)
when the hopping vanishes, the ground state for half filled
checkerboard lattice has a macroscopic degeneracy [11,25]
given by (4/3)

3N
4 which increases exponentially with the

number of lattice sites N. This highly degenerate state has
strong local charge correlations described by the tetrahe-
dron rule [4] but it has no long range charge ordering [26].
It is therefore possible that CO obtained here for the rigid
checkerboard lattice above Vc2 and for finite t may be due
to the employed approximation. In fact, the Verwey-type
charge ordered state obtained here is one of the macro-
scopically degenerate states that obeys the tetrahedron
rule. If there occurs a corresponding lattice distortion, for
example, a compression along the diagonal direction [12],
the system would select such a CO state shown in the inset
of Figure 1 out of the macroscopically degenerate states.
Indeed in some 3D pyrochlore compounds which exhibit
CO as mentioned in the introduction, it is always ac-
companied by symmetry lowering lattice distortions which
remove the frustration by introducing inequivalent bond
lengths in the tetrahedrons of the corner sharing lattice.
Theoretically this has been described by adding a defor-
mation potential coupling of spinless fermions to the lat-
tice and the elastic energy of associated symmetry strains
in the Hamiltonian (1). It has been shown within unre-
stricted Hartree Fock approximation that this leads to
a first order transition into a charge ordered state with
spontaneous lattice distortion [6]. It seems possible that
the extended CO model with lattice coupling can also be
treated within the present HubbardI-type approximation.

As compared to the previous mean field approxima-
tion we found that the Hubbard I decoupling scheme sup-
presses the tendency to charge order in favor of a M-I
transition without symmetry breaking. At this point it
is appropriate to compare to the CO on the simple 2D
square lattice (without the crosses in the inset of Fig. 1.)
In the simple square lattice there is no frustration present.
Therefore even on the rigid square lattice a transition to
an only doubly degenerate charge ordered state of the type
illustrated in Figure 1 (without the crosses) will occur for

V > Vc = 0.93t. Because only a single n.n. tight binding
band is present now the CO will remove the Fermi sur-
face (for spinless half filling) and the CO transition will
coincide with a transition to a charge transfer insulator,
contrary to the case of the checkerboard lattice discussed
here.

3 Cluster approximation

We want to supplement the previous calculation based
on a Hubbard I type of approximation by another one
where the strong electron correlations are treated more
rigorously within a cluster but within mean-field approx-
imation outside the cluster. Within this scheme we want
to determine the critical interaction Vc1 at which a gap
opens in the excitation spectrum when the case of half-
filling is considered. We do not care here about a possible
charge order at large value of V because, as pointed out
before, that may turn out to be an artefact of the involved
approximations.

We divide the checkerboard lattice into sublattice A
and B of the plaquette so that each sublattice contains
N/4 units where N is the number of sites. Figure 5 shows
black (basic) clusters linked across white square. The
Hamiltonian (1), H = Ht + HV , is decomposed into

Ht = H
(intra)
t +H

(inter)
t ; HV = H

(intra)
V +H

(inter)
V . (28)

Here each of the terms, H
(intra)
t and H

(intra)
V , is a sum over

l = 1, ..., N/4 decoupled basic clusters while H
(inter)
t and

H
(inter)
V are due to the intercluster coupling. Specifically

the decoupled clusters are treated by the Hamiltonian

H
(intra)
t + H

(intra)
V =

∑

l

H
(intra)
t−V (l) (29)

H
(intra)
t−V (l) =

∑

i,j

Mij (0)
(
−tc†ilcjl +

V

2
nilnjl

)
. (30)

Here i, j = 1, ..., 4 denote the sites within a cluster with
lattice vector l and Mij (0) is a (4 × 4)-matrix with ele-
ments Mij (0) = 1, if i 	= j, and Mii (0) = 0. Furthermore
nil = c†ilcil. Thus, H

(intra)
t−V (l) represents an intracluster

Hamiltonian to be solved below.
To write down in a systematic way the intercluster cou-

pling given by H
(inter)
t and H

(inter)
V , we refer to Figure 5

where a fragment of the checkerboard lattice is shown with
the origin located at the center of a basic cluster. There are
eight neighboring basic clusters connected to a given one
with the translation vectors {τ } = τ 1, τ 2,...,τ 8. Three of
them are depicted in Figure 5. The intercluster electron
hopping and Coulomb repulsion terms can be written as

H
(inter)
t = −t

∑

l

∑

{τ }

∑

i,j

Mij (τ ) c†i,l+τ cjl (31)

H
(inter)
V =

V

2

∑

l

∑

{τ }

∑

i,j

Mij (τ )ni,l+τ njl (32)
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Fig. 5. Fragment of the checkerboard lattice. Only four neigh-
boring basic clusters connected by elementary translation vec-
tors τ1, τ2 and τ3 are shown. Within each basic cluster the
lattice sites are denoted by 1, ..., 4.

where the eight (4 × 4)-matrices Mij (τ ) are specified by
referring to Figure 5. Consider first the matrix Mij (τ 1)
that connects two neighboring clusters by τ 1-translation.
According to Figure 5, only two individual two-site bonds
contribute to this connection (reading from the right
to the left): (ij) = (14), (23). Therefore, we define
M14 (τ 1) = M23 (τ 1) = 1 and Mij (τ 1) = 0 otherwise.
In a similar way, one finds M13 (τ 2) = 1, M12 (τ 3) =
M43 (τ 3) = 1 and Mij (τ 2) = Mij (τ 3) = 0 otherwise.
With this procedure, the other five matrices Mij (τ ) can
be easily found as well.

Now we solve the intra-cluster eigenvalue problem by
diagonalizing the Hamiltonian H

(intra)
t−V (l) from (30) sep-

arately in each n-particle (n = 0, 1, ..., 4) sector

H
(intra)
t−V (l)

∣∣∣Ψ (n)
ν

〉

l
= E(n)

ν

∣∣∣Ψ (n)
ν

〉

l
. (33)

The empty state |Ψ (0)
ν=1〉l with energy E

(0)
ν=1 = 0 defines the

cluster vacuum state |0〉l. There are four singly occupied
cluster states |Ψ (1)

ν 〉l with ν = 1, ..., 4 which are found
to be

∣∣∣Ψ (1)
ν

〉

l
=

4∑

i=1

βνic
†
il

∣∣∣0
〉

l
≡ f †

νl

∣∣∣0
〉

l
(34)

where βνi is a (4 × 4)-matrix

βνi =
1
2





1 1 1 1
1 −1 1 −1√
2 0 −√

2 0
0

√
2 0 −√

2



 (35)

and the corresponding eigenvalues are

E
(1)
1 = −3t; E

(1)
2 = E

(1)
3 = E

(1)
4 = t. (36)

The eigenvectors (34) are basis vectors of different irre-
ducible representations of C4h point group: the case ν = 1
describes the lowest energy fully symmetric (ag) solution,
ν = 2 belongs to bg and ν = 3, 4 to eu representation. Be-
low we will refer to these 1-particle solutions as cluster ‘or-
bitals’. According to (34), for a given cluster l the transfor-
mation from the original site operators c†il (i = 1, ..., 4) to

the cluster ‘orbital’ operators f †
νl is given by the matrix βνi

defined in (35). Note that the f †
νl (fνl) operators anticom-

mute. The cluster states of higher occupancy n = 2, 3, 4
can be understood as a result of successive filling of cluster
‘orbitals’. For instance, for n = 2 one obtains six eigen-
states (the cluster index l is dropped):

∣∣∣Ψ (2)
1,2,3

〉
= f †

2f †
1 , f †

3f †
1 , f †

4f †
1

∣∣∣0
〉
,

∣∣∣Ψ (2)
4,5,6

〉
= f †

3f †
2 , f †

4f †
2 , f †

4f †
3

∣∣∣0
〉

(37)

with corresponding energies

E
(2)
1,2,3 = −2t + V, E

(2)
4,5,6 = 2t + V. (38)

In the cluster ‘orbital’ representation, the terms H
(intra)
t

and H
(intra)
V in (29) can be now written as follows

H
(intra)
t =

∑

l

(
−3tf †

1lf1l + t

4∑

ν=2

f †
νlfνl

)
, (39)

H
(intra)
V =

V

2

∑

l

4∑

ν=1

∑

ν′( �=ν)

nνlnν′l. (40)

From the result (40), one can see that H
(intra)
V is the Hub-

bard term in an effective, ‘multi-orbital’ electronic model.
Such a model is derived below by adding to (39) and (40)
the intercluster hopping H

(inter)
t and the Coulomb

H
(inter)
V terms and by using for the latter a mean-field ap-

proximation, i.e., ni,l+τ njl � 〈ni,l+τ 〉njl + ni,l+τ 〈njl〉 −
〈ni,l+τ 〉 〈njl〉. The approximated term H

(inter)
V,MF reads

H
(inter)
V,MF =

3
4
〈Nc〉V

∑

l

4∑

i=1

nil =
3
4
〈Nc〉V

∑

l

4∑

ν=1

nνl,

(41)
where the last equality is due to

∑
i nil =

∑
ν nνl, and

〈Nc〉 =
∑

ν 〈nνl〉 is the average cluster occupancy. In the
cluster ‘orbital’ representation, the hopping term H

(inter)
t

takes the following transparent form

H
(inter)
t =

∑

l

∑

{τ }

∑

ν,ν′
Tνν′ (τ ) f †

νl+τ fν′l. (42)

The (4 × 4)-matrices Tνν′ (τ ) are related to the Mij (τ )
by a rotation

Tνν′ (τ ) = −t
∑

ij

βνiMij (τ )βν′j , (43)

because
(
β−1

)
jν′ = βν′j . Finally, by collecting the con-

tributions (39–42), we obtain an effective ‘multi-orbital’
Hubbard-like Hamiltonian

Ht−V = H
(intra)
t + H

(intra)
V + H

(inter)
t + H

(inter)
V,MF . (44)
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The effective Hamiltonian (44) has a lower symmetry com-
pared to that of the original Hamiltonian (1). This may
lead to an artificial low-symmetry ground-state solution,
for instance, to a long-range charge/bond ordering. Here
we suggest, however, that the geometrical frustration of
the checkerboard lattice prevents this kind of long-range
ordering, as was discussed already in the beginning of
this section. Therefore we supplement the effective Hamil-
tonian (44) with additional restrictions, which prevent
an artificial low-symmetry solution of (44). We require:
(a) a homogeneous electron distribution over the lattice
sites,

〈
c†ici

〉
= n, with n being the electron concentra-

tion, and (b) a bond-independence of hopping amplitudes,〈
c†icj

〉
= k, where a pair of sites i, j denotes a bond ( there

are six bonds within each plaquette). Note that k is a real
n-dependent quantity to be calculated self-consistently.
On general grounds, one expects that k > 0 in a metallic
phase and k = 0 in an insulating phase. Both require-
ments (a) and (b) together impose restrictions on cluster
‘orbital’ averages

〈
f †

νlfν′l

〉
=

∑

ij

βνiβν′j

〈
c†ilcjl

〉
= n

∑

i

βνiβν′i

+ k




(

∑

i

βνi

)


∑

j

βν′j



 −
∑

i

βνiβν′i



 . (45)

By using that
∑

i βνiβν′i = δνν′ and

∑

i

βνi =
{

2; ν = 1
0; ν = 2, 3, 4

}
(46)

one obtains for ν = ν′ the following relations for cluster
‘orbital’ occupancies
〈
f †
1lf1l

〉
= n+3k, (ν = 1);

〈
f †

νlfνl

〉
= n−k, (ν = 2, 3, 4).

(47)
If ν 	= ν′, the expression (45) leads to

〈
f †

νlfν′l

〉
= 0, (ν 	= ν′) . (48)

For an isolated cluster with an integer electron occupancy
equation (48) is obviously fulfilled because of symmetry
arguments.

Based on the effective model (44) we calculate the
electronic band structure from the Fourier transformation
Gνν′ (q, ω) of the retarded matrix Green’s function:

Gνν′ (l − l′, t − t′) =
〈〈

fνl (t) |f †
ν′l′ (t′)

〉〉
=

− iθ (t − t′)
〈
{fνl (t) , f †

ν′l′ (t′)}
〉

. (49)

To obtain the equation of motion for Gνν′ (q, ω), we use
the method [27] of the two-time ‘irreducible’ Green’s func-
tion. A successive differentiation of (49) with respect to

both times t and t′ with the use of properly defined pro-
jection procedure lead to the Dyson’s equation:

[
ω1̂ − Ω̂ (q) − Σ̂ (q, ω)

]
Ĝ (q, ω) = 1̂. (50)

Here 1̂, Ω̂ (q) and Σ̂ (q, ω) are the unit, a frequency and
a self-energy (4 × 4)-matrices, respectively. To define Ω̂

and Σ̂ explicitly, it is convenient to introduce a notion
of a scalar product of two fermionic operators A and B
as

〈
A|B†〉 =

〈{A, B†}〉. In this notation, the matrix ele-
ments of Ω̂ are

Ωνν′ (q) =
〈

i
·
fνq|f †

ν′q

〉
=

〈
{[fνq, Ht−V ] , f †

ν′q}
〉

, (51)

resulting in

Ωνν′ (q) = δνν′E(1)
ν + Tνν′ (q)

+ δνν′V




∑

ν1( �=ν)

〈nν1〉 +
3
4
〈Nc〉



 . (52)

Here the E
(1)
ν are given by (36) and

Tνν′ (q) =
∑

{τ }
eiq·τ Tνν′ (τ ) . (53)

The frequency matrix Ω̂ provides for a mean-field descrip-
tion of the electronic band structure. In order to include
effects of electron correlations, the self-energy part Σ̂ must
be calculated.

For this purpose, the set of basis operators fνq is com-
plemented with a new set of operators Fνq (ν = 1, ..., 4):

Fνq = i
·
fνq −

∑

ν′
Ωνν′ (q) fν′q, (54)

which are orthogonal to fνq, i.e.
〈
Fνq|f †

ν′q′

〉
= 0. Then,

the self-energy Σ̂ has the form of an ‘irreducible’ matrix
Green’s function [27] whose elements are defined by

Σνν′ (q, ω) =
〈〈

Fνq|F †
ν′q

〉〉(irr)

ω
=

〈〈
Fνq|F †

ν′q

〉〉

ω

−
∑

ν1ν2

〈〈
Fνq|f †

ν1q

〉〉
ω

1〈〈
fν1q|f †

ν2q

〉〉

ω

〈〈
fν2q|F †

ν′q

〉〉

ω
.

(55)

The irreducible Green’s function matrix〈〈
Fνq|F †

ν′q

〉〉(irr)

ω
obeys the following equation (the

lower indices are omitted for brevity):

ω
〈〈

F |F †〉〉(irr)

ω
=

〈
F |F †〉

+

{〈
i

·
F |F †

〉
+

〈〈
i

·
F | − i

·
F

†〉〉(irr)

ω

}

× 1
〈F |F †〉

〈〈
F |F †〉〉(irr)

ω
. (56)
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We truncate this equation by neglecting in (56)
the next-order ‘irreducible’ matrix Green’s function〈〈

i
·

F | − i
·

F
†〉〉(irr)

ω

. For the effective ‘multiorbital’

model (44), the truncation corresponds to the first step
of the Hubbard-I approximation and results in the follow-
ing form of Σ̂:

Σνν′ (q, ω) =
[
ω1̂ − Λ̂ (q)

]−1

νν′

〈
Fν′q|F †

ν′q

〉
, (57)

where the frequency matrix Λ̂ (q) is given by

Λνν′ (q) =

〈
i

·
F νq |F †

ν′q

〉

〈
Fν′q|F †

ν′q

〉 . (58)

In the Hubbard-I approximation applied to the stan-
dard Hubbard model, the corresponding self-energy is
q-independent. We shall apply a similar approximation
here by dropping the intercluster hopping term H

(inter)
t

which appears in the equation i
·

F νq= [Fνq, Ht−V ]. In the
following, Λ̂ and Σ̂ are q-independent matrices and the
latter is of the form

Σνν′ (ω) = δνν′

〈
Fνl|F †

νl

〉

ω −
〈
i

·
F νl |F †

νl

〉
/

〈
Fνl|F †

νl

〉 . (59)

With the definition (54), one obtains explicitly

Fνl = V δNν
l fνl, (60)

where

δNν
l = Nν

l − 〈Nν
l 〉 , Nν

l = Nl − nνl =
∑

ν1( �=ν)

nν1l. (61)

Then the diagonal elements of the frequency matrix
entering into the denominator of (59) are found to be

Λνν =

〈
i

·
F νl |F †

νl

〉

〈
Fνl|F †

νl

〉 = E(1)
ν +

3
4
V 〈Nc〉+ V

〈
Nν

l (δNν
l )2

〉

〈
(δNν

l )2
〉 .

(62)
Both averages,

〈
(δNν

l )2
〉

and
〈
Nν

l (δNν
l )2

〉
, are approx-

imated in a mean-field manner. For instance, in this ap-
proximation, the mean value

〈
(δNν

l )2
〉

which describes
the intracluster charge correlations, reads

〈
(δNl)

2
〉

=
∑

ν1( �=ν)

〈nν1l〉 (1 − 〈nν1l〉) .

We summarize the results for the self-energy as follow
(〈nνl〉 = 〈nν〉):

Σνν (ω) =

∑
ν1( �=ν) 〈nν1〉 (1 − 〈nν1〉)

ω − Λνν
, (63)

Λνν (ω) = E(1)
ν +

3
4
V 〈Nc〉 + V

∑
ν1( �=ν) 〈nν1〉 (1 − 〈nν1〉)2∑
ν1( �=ν) 〈nν1〉 (1 − 〈nν1〉)

+ V

∑
ν1( �=ν)

∑
ν2( �=ν,ν1) 〈nν1〉 (1 − 〈nν1〉) 〈nν2〉∑
ν1( �=ν) 〈nν1〉 (1 − 〈nν1〉)

.

(64)

In this expression the second term is the inter-cluster
Hartree-Fock correction. The third and fourth terms
are intra-cluster Hubbard-I type correlation corrections,
where the latter appears only for the present ‘multi-
orbital’ Hubbard Hamiltonian. In the common Hubbard
model (with just one ‘orbital’) only the third correc-
tion would be present. To perform self-consistent band-
structure calculations, a chemical potential µ is introduced
in a standard way. For a given spinless-fermion concentra-
tion n0 varying within the range 0 ≤ n0 ≤ 1, the value
of µ is determined from the equation

n0 =
1
4
〈Nc〉 =

1
4

4∑

ν=1

〈nν〉 , (65)

where 〈nν〉 is an average ‘orbital’ cluster occupancy

〈nν〉 =
1
M

∑

q

∫ µ

−∞
dω (−1/π) Im Gνν (q, ω) . (66)

Here the summation is over M = N/4 q-vectors in the
first Brillouin zone of the square lattice formed by the
basic clusters in the checkerboard lattice. The ‘orbital’
occupancies should obey the relations (47).

The most representative results of the self-consistent
band structure calculations are shown in Figures 6 and 7.
In Figure 6, band spectra for different values of coupling
V are given along highly symmetrical directions in the
square Brillouin zone. To show the insulating gap open-
ing in the band spectrum with increasing V , the elec-
tron concentration n0 = 1/2 corresponding to an integer
mean cluster occupancy 〈Nc〉 = 2 is chosen; the chemi-
cal potential µ is located at zero energy. From the upper
panel, a doubly degenerate completely flat branch on the
top of two highly dispersive bands is seen for the non-
interacting case, V = 0. For finite coupling V , but less
than some critical value V < Vc, these four branches are
split and the chemical potential intersects one of the dis-
persive branches as shown in the middle panel of Figure 6.
In this weakly correlated regime of the model one expects
a metallic state of the system. We found that starting from
V = Vc ≈ 4t, the spectrum is clearly split into the low-
and high-energy Hubbard subbands separated with a gap
growing as V increases above Vc. For a given concentration
〈Nc〉 = 2 and V > Vc, the four lowest Hubbard subbands
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Fig. 6. Energy bands of spinless fermions on the checkerboard
lattice calculated in the cluster approach for different values
of inter-site repulsion V/t = 0, 3 < Vc/t and V/t = 10 >
Vc/t � 4. The bands are unfolded along the highly symmetrical
directions in the square Brillouin zone; energy unit is t ≡ 1.
The electron concentration is chosen as n = 1

2
(equivalent to

〈Nc〉 =2) and the chemical potential µ is fixed at zero energy.

Fig. 7. Mean cluster occupancy 〈Nc〉 calculated as a function
of the chemical potential µ at V/t = 10. Two wide flat regions
with d〈Nc〉/dµ = 0 at 〈Nc〉 = 1, 2 indicate an insulating state
of the system.

are filled completely and located below the chemical po-
tential µ as shown for V = 10 in the lower panel of Fig-
ure 6. If one includes a weak next neighbor hopping t′,
the former flat energy branches acquire a small disper-
sion, the picture of the insulating gap opening still retains
at slightly changed value of the critical coupling Vc.

In this paper, however, we restrict ourselves to the
study of the limit, t′=0. In this limit, to avoid discussing
a rather special case of the partially filled upper flat band,
the electron concentration is chosen to vary in the range
n0 ≤ 1/2. Within this range, for strong coupling V the
model displays an insulating state at the integer cluster
occupancy 〈Nc〉 = 1 as well. This can be easily seen from
Figure 7, where the calculated mean cluster occupancy

〈Nc〉 is depicted as a function of the chemical potential
µ for V = 10. The charge compressibility d 〈Nc〉 /dµ is
found to be zero in a wide range of varying µ at both in-
teger occupancies 〈Nc〉 = 1, 2. Near the occupancy value
〈Nc〉 = 1.5, the sharp change of 〈Nc〉 is connected to the
fact that µ intersects the flat band peculiarity in the den-
sity of states.

4 Conclusion

In this work we have studied an extended Hubbard type
spinless fermion model for the frustrated checkerboard
lattice which is a 2D analogue for pyrochlore or spinel-
type lattices. We have studied the possibility of a metal-
insulator phase transition as function of the inter-site
Coulomb interaction and the band filling. We have used
single-site and cluster representations of the model. In the
latter the intra-cluster correlations are accounted for ex-
actly by transforming to a ‘cluster orbital’ basis. Within
a Green’s function approach decouplings on Hartree-Fock
and ‘Hubbard-I’ type level for the inter-site Coulomb term
have been employed. In both approaches we find a metal-
insulator transition for increasing V for half filling (that
is one fermion per two sites) and in the cluster approach
even for quarter filling. The MI transition is of the Mott
Hubbard-type and is associated with a gap opening in the
quasiparticle excitations. The critical interaction for the
MI transition is Vc1/t = 4.86 in the single site approach
and Vc/t � 4 in the cluster approach are in reasonable
agreement. We also consider the possibility of charge or-
dering within the single-site approach where we find a
transition to a staggered CO state with Q = (0,0) at
Vc2/t = 6.47. This state may be a result of the approxi-
mations employed since for V/t → ∞ CO has to vanish
due to the macroscopic degeneracy of the ground state.
Stabilisation of CO may indeed require the coupling to
the lattice to lift this degeneracy [6]. This would imply
the introduction of a deformation potential coupling of
the relevant symmetry strain to spinless fermions and its
corresponding elastic energy as was proposed in [6]. This
extended model can still be treated within the Hubbard
I-approximation using the method of Section 2. Further
progress in understanding the nature of the insulating
state caused by the inter-site Coulomb interaction may
require the use of more advanced methods like cluster dy-
namical mean field methods which has so far not been
achieved.

The authors are grateful to Prof. P. Fulde for suggesting the
subject of studies and valuable discussions and comments.
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